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Computer-Aided Synthesis of a Lossy
Commensurate Line Network and
Its Application in MMIC’s

Lizhong Zhu, Member, IEEE

Abstract —In this paper, a useful theorem which extends a previously
introduced lossy transformation technique [1] to more general applica-
tions is proposed for transformation between distributed lossy and
lamped lossless networks, and a corollary is given for extension of the
well-known Kuroda identities to the general lossy case. A new
computer-aided approach is developed for the synthesis of lossy com-
mensurate line networks with all lines having arbitrary frequency-
dependent losses. As an application, two broad-band amplifiers are
designed for monolithic microwave integrated circuits (MMIC’s) and
their performances are compared with the examples in [2] and [3].

1. INTRODUCTION

T is well known that MMIC’s have found a variety of

applications in radar, spaceflight, satellites, and military
communications. Matching networks are the most important
parts of MMIC’s and are usually constructed from lumped
and distributed elements. These matching elements, which
are fabricated on semi-insulating GaAs substrates, have losses
much greater than those of matching elements developed for
conventional hybrid integrated circuits. Thus, existing tech-
niques that are considered efficient [2]-[10] for synthesizing
lumped and distributed lossless matching networks are not
suitable for lossy matching networks. To solve this problem,
a theorem has been introduced [1] for transformation be-
tween lumped lossy and lossless networks, and a new com-
puter-aided lossy transformation technique has been devel-
oped for treating the synthesis of lumped matching networks
with arbitrary nonuniform losses. However, it is clear that
only a small part of the problem has been solved. As fre-
quency increases to the millimeter-wave region, the dis-
tributed network is superior to the lumped one in many
aspects. For example, transmission lines have lower parasitic
reactances and their characteristic impedances can be real-
ized easily and exactly.

The modern design of microwave TEM distributed net-
works is based upon a complex plane transformation intro-
duced by Richards in 1948 [11]. Later, other authors were
stimulated by his article and significant achievements were
made. The well-known Kuroda identities were among these
contributions, making it possible to realize synthesized com-
mensurate line networks. As for the synthesis of distributed
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lossy network, to our knowledge, few published papers have
dealt with it.

In order to consider the losses of transmission lines in the
synthesis of a distributed network, a new and useful theorem
is introduced which extends the lossy transformation tech-
nique described in [1] to wider applications and makes it
possible to obtain the parameters of a corresponding lossy
commensurate line network from those of a lumped lossless
network. The well-known Kuroda identities are extended by
a corollary to the general lossy commensurate line network.
It will be seen by comparison with the results shown in [2]
and [3] that the new method is practically applicable and
considerably simplified, and is able to yield any complex
models of the commensurate lines with arbitrary frequency-
dependent losses. Furthermore, a computer-aided procedure
is presented to show the detailed synthesis steps of two
broad-band monolithic microwave integrated FET amplifiers
with lossy commensurate line networks as matching net-
works.

II. TRANSFORMATION AND KURODA’S IDENTITIES OF
THE Lossy COMMENSURATE LINE NETWORK

Richards, in his famous paper [11], first used the following
transformation:

A=tanh[y(s)!] (D)
to synthesize a lossless commensurate line network,! where
v(s) is the propagation constant; s = jw, the complex angular
frequency;, and [ is the length of all the transmission line
elements. By this relation, a complex angular frequency in
the s plane will be mapped into the A plane, and many
theorems for lumped lossless networks can be “translated”

'into theorems on the lossless commensurate line network.

Thereafter, the Richards transformation became the theoret-
ical basis for almost all the published papers on distributed
network synthesis, and the relevant theorems were used to
treat the lossless commensurate line network. However, a
general method had not been found for the synthesis of a
lossy commensurate line network with all lines having arbi-
trary frequency-dependent losses.

In general, the propagation constant and characteristic
impedance of a lossy transmission line are frequency-depen-

'Small losses were considered under the assumption that all lines in
the circuit are distortionless. But the change of frequency variable must
be made in the true frequency plane, as was done by Darlington [12].
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dent functions and can be written as

¥(5) =y (sL + R)(sC + G) = Byv,(s) (2a)
Zy(s)=y(sL+R)/(sC+G) =Zy ,5(s)  (2b)

in which
Bo=w,/C,, (3a)
Yo(s) =V (jon +1/ Q1) (jo, +1/Q) (3b)
Zy, =\/-L—/—E (3¢0)

8(s)=v/(jo, +1/0))/(jw, +1/Q.) (3d)

where R, L, G, and C are the series resistance, series
inductance, shunt conductance, and shunt capacitance, all
per unit length, for a given line. Q;=w,,L /R and Q, =
0,,C/G are the quality factors of the conductor and dielec-
tric of the line, respectively, at measured angular frequency
w,. C,,=1/ VLC is the velocity of propagation on the line,
and w,~=w /w,, is the normalized angular frequency. From
(2b), (3c), and (3d), it can be found that the characteristic
impedance, Zy(s), may be divided into two parts, one being
the frequency-dependent function &(s), and the other the
real positive multiplicative constant, Z ,. If the lossy trans-
mission line reduces to a corresponding lossless one, §(s)
will be equal to 1 and Z(s) to Z, ,, which is usually called
the static characteristic impedance of the lossless transmis-
sion line.

Now, assume that all elements constructed by the lossy
transmission lines have the same y(s) and 8(s). Then the
impedances of short- and open-circuited stubs will have the
following expressions:

Zsh(s) =Z0,sh6(s)tanh[y(s)l] (43)

Zoo(8) = Zg ,8(s) /tanh [y(s)!] (4b)
where Z, i, and Z, , are similar to Z, ,, and Z, ;,8(s) and
ZO,Opé(s) are frequency-dependent characteristic impedances
of the short- and open-circuited stubs.

If a lossy commensurate line network contains only the
short- and open-circuited stubs, then by substituting

Z,=5(s)tanh[y(s)!]
Z,=6(s) /tanh [ v(s)!]

(52)
(5b)
in (4), we have
Zi(8)=ZynZ, (6a)
Zop($) = Zo,0pZs- (6b)

Thus, in terms of the transformation introduced in [1], the
lossy commensurate line network can be transformed to a
corresponding lumped lossless network or the Richards
transformation can be used to transform the short- and
open-circuited stubs to lossless inductors and capacitors,
respectively, if the stubs are lossless.

But a lossy commensurate line network without a finite
lossy transmission line, which is usually incorporated as a
distributed lossy unit element (UE), will be practically use-
less. However, unlike a finite lossless transmission line, the
distributed lossy UE cannot be transformed directly by the
Richards correspondence. Furthermore, it is uncertain
whether or not the distributed lossy UE can be transformed
as the short- and open-circuited stubs. In order to solve this
problem, the transformation in [1] is revised and a new
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Fig. 1.

Equivalent circuit of a distributed lossy unit element.

theorem, given below, is proposed which can be employed to
transform the distributed lossy UE to a corresponding
“lumped lossless UE.”

Theorem: If each element of a basic unit or of its equiva-
lent circuit produces an individual impedance equal to the
product of Z, and a rational function of Z, /Z,, except for
a possible branch point at Z, /Z, =1, where Z, and Z, are
any physically realizable impedances, then the impedance
matrix of any lossy or lossless network N constructed by
these basic units, if it exists, can be- transformed to the
impedance matrix of a corresponding lossless network M.
That is,

Z(A\)=Z/\Z,Z, =F(X) /A

(72)
Z(s)=ZVZIZZ =2,F(2,/2,) ~ (7b)

where F(x) is a_matrix with its elements being the rational
functions of x. Z(A) and Z(s) are impedance matrices of M
and N, respectively, with A and s being their complex
angular frequencies, which are related by

A=y Z(s)/Zy(s) .
(See the procf in the Appendix.)

(®)

It can be ecasily verified that (8) maps both right halves of
the s and A planes to each other. This mapping is certainly
not one-to-one, but the multiple-valued state of the inverse
corresponds merely to the periodicity of Z(s) given by (7b).

It should be emphasized that although this theorem is
based upon the theorem in [1] and has a form of transforma-
tion similar to [1, corollary 1] the conditions between them
are different. The former extends the original condition of
the latter to a more general case. That is, all that is required
is that each element in the impedance matrix or in the
equivalent circuit of a basic unit have the form Z,f(Z, /Z,).
Of course, this form can reduce to Z, or Z,. Therefore, this
theorem is especially suitable for those elements which can-
not simply be represented by the impedance which is propor-
tional to Z, or Z,. The advantage of the theorem can be
seen clearly by the following example.

Example

A distributed lossy UE with line length I (shown in Fig. 1)
can be considered as a basic unit and is generally expressed
by its transfer matrix

cosh[y(s)!]

7= Zy 5(s)sinh[y(s)!]
- sinh [y(s)1]/[Z,,,8(s)]

cosh[y(s)!]
)

Then it can be found by substituting (5) in the elements, z,
and z,, of its equivalent circuit that the condition of the
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theorem is satisfied, i.e.,

2y =20, 2,[1-\1=2,/Z, | (10a)

Here, Z ,,8(s), and y(s) are given by (2) and (3). Thus, with
the help of (7), Z, the impedance matrix of a corresponding
“lumped lossless UE,” can be obtained from Z, the
impedance matrix of the distributed lossy UE:

V4 1 [Zl+22 Zy ]

VZ.Z, B VZ,Z, L * 71+ 2,

_Zoe| 1 1-¥
A lY1- a2 1

where A =1/Z, /Z, = tanh [y(s)I].

Since a lossy commensurate line network is usually con-
structed by the distributed lossy UE’s and by short- and
open-circuited lossy stubs, an important conclusion can be
drawn. This is that if all the elements of the lossy commensu-
rate line network have a common propagation constant, y(s),
and their characteristic impedances are all proportional to
8(s), where in addition to the expressions given in (2) and
(3), y(s) and 6(s) may be any other frequency-dependent
functions, there will be a one-to-one transformation between
the lossy commensurate line network and its corresponding
lumped lossless network with distributed lossy UE’s, short-
circuited lossy stubs, and open-circuited lossy stubs corre-
sponding to “lumped lossless UE’s,” lossless inductors, and
capacitors, respectively.

Therefore, by means of the following transformation [1]:

S ={(I+S8)—yZ,Z, (I1-5)}

7=

(11)

{1+ +VZZ, (1~} (120)
S()={VZ:Z, (1 + $) - (1= $)}
WZZ,(1+$)+(-$H) ' (12v)

where S(s) and S(A) are the unit normalized scattering
matrices of any lossy or lossless network N and its corre-
sponding lossless network M, respectively, I is the identity
matrix, and Z, and Z, are as defined in (5), the unknown
unit normalized scattering parameters of the lossy commen-
surate line network can be obtained from those of a previ-
ously assumed lumped lossless network. A detailed descrip-
tion will be given in Section III.

It should be noted that although the A in (11) has the
same expression as that employed by Richards, the transfor-
mation given in (12) cannot be achieved by directly using his
correspondence. In reverse, it can be seen by carefully con-
sidering the transformation (12) that the Richards trans-
formation may be considered as a special case of our
transformation. For example, if all of the lossy lines in a
commensurate line network reduce to their corresponding
lossless ones, 8(s) will be equal to 1 and y(s) to s7, where
7=1/C,,. These will result in /Z,Z,=1 and A
=m=tanh(sr). In this case, (12) will become the
well-known Richards correspondence, i.e.,

S(s) = S~()\)|/\=tanh(sr)

(13)

where s = jw.

Even though the lossy commensurate line network may be
synthesized by means of the transformation mentioned above,
without the corresponding Kuroda identities, the synthesized
network may sometimes be impracticable.? Are the Kuroda
identities still valuable in this lossy case? The answer is yes!

Corollary: The Kuroda identities, which are suitable for
the lossless commensurate line network, will still hold for the
corresponding lossy commensurate line network.

In applying the corollary, one point to which attention
should be paid, is that because of the lossy property of the
distributed lossy UE, a new distributed lossy UE introduced
in front of the 1  source or load resistor and shifted into
place using Kuroda’s identities for making the synthesized
network practically realizable, as is usually done for lossless
transmission lines [9], will cause the characteristics of the
final network to deviate from those of the originally synthe-
sized one. Certainly, the larger the number of distributed
lossy UE’s introduced, the larger the resulting deviation. To
solve this problem, two methods may be employed. In the
first, a proper ratio between the number of distributed lossy
UE’s and lossy stubs is chosen. Thus, the series and short-
circuited stubs, which are difficult to realize in practice, can
be transformed by shifting the relevant distributed lossy UE’s
contained in the network. In the second method, the deviation
resulting from the introduced distributed lossy UE's is adjusted
by optimizing the final network.

III. ApPPLICATION OF THE DISTRIBUTED LoOssy
TRANSFORMATION TECHNIQUE

In order to clearly demonstrate the synthesis procedure of
the lossy commensurate line network and its application in
MMIC’s, the detailed synthesis steps for two broad-band
monolithic microwave integrated FET amplifiers are illus-
trated.

Example 1

Step 1: The lumped lossless networks, which can be real-
ized by ideal transformers, “lumped lossless UE’s,” and
lossless inductors and capacitors, are assumed to correspond
to lossy commensurate line matching networks and to have
the following forms of unit normalized scattering parame-
ters:

h(A)  hy+hyA+hsA2+ - +h, A"

511,:»(/\)28,()\) T T AT gt g N (15a)
512,1‘(/\) = é21,1'(/\) = f(’\)/g(’\)

= (+/ =)= " g(n) (15b)

En M) = (=D h(=N1)/g()) (v =1,2,.., NM).

(15¢)

Here NM is the number of networks; A()\) and g()\) are the
numerator and denominator polynomials of &, .(A) and
have the same degree n. The numerator polynomial f(A) of

2Even if the low-pass Kuroda identities are the same as the Richards
technique by alternately removing a shunt open-circuited stub followed
by a cascaded line, and high-pass Kuroda identities are equivalent to the
partial stub extraction [14], the Kuroda identities are somewhat more
convenient for practical applications.
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€15 ,(A) has degree m + k < n, where m and k represent the
number of lumped lossiess UE’s and high-pass elements,
respectively. Thus, the number of low-pass elements is deter-
mined by n—(m + k).

It should be pointed out that even though the number of
total matching elements is specified by n, the optimal num-
ber of elements will be determined by adjusting the coeffi-
cient h; (i=1,2,---,n+1) of h(s) in an optimization proce-
dure, and the coefficient g; of g(s) will be correspondingly
specified in accordance with the unitary property of a loss-
less network [7], [13]. Also, since the line length [, (v=
1,2, ,NM) in our technique is used as a variable for obtain-
ing even better performance, its value, which is chosen as a
quarter wavelength at 1.5 times the high-frequency limit of
the passband, will become an initial value in the optimiza-
tion. Thus, the final line lengths of the matching elements in
a matching network may differ from those in another match-
ing network.

Step 2: O, and Q. of the distributed lossy UE’s and lossy
stubs are assumed to be 80 and 120 at f,, = 14 GHz and
Cop = 3 x 10! mm/s, and So, ¥(s), and §(s) are then computed.
By substituting (3a) and (3b) into (2a), and (2a) and (3d) into
(5), respectively, Z, and Z, in (12) can be calculated. Thus, the
unit normalized scattering parameters, e;;.(s) (3,7 = 1,2), of
the lossy commensurate line matching networks can be obtained
from (15) via (12).

Step 3: The numerically specified scattering parameters of
a HP 1 um MESFET are used [2] across the octave band of
7-14 GHz. The source and load impedances of the amplifier,
Z, and Z,, are specified to be 50 (. The expression for the
transducer power gain (TPG) of a lossy matched amplifier [1]
is employed in the optimization. It can be found by analyzing
the FET’s scattering parameters that the device is absolutely
stable with the calculated maximum available gain from
14.73 dB at 7 GHz to 7.98 dB at 14 GHz. Thus, from the
maximum gain-bandwidth point of view, the goal of a flat
gain level, Tj(w), to be approached by the TPG should not
exceed 7.98 dB. Therefore, considering the losses in the lossy
matching elements and the calculated maximum available
gain at 14 GHz, T (w) is specified to be 7.0 dB over the
octave band.

Step 4: With h, being unknown variables, a better TPG
will be achieved by an optimization routine, and &;; () in
(15a) can then be determined. Thus, the lumped lossless
network can be realized by first applying Richards’ theorem
m times to the input impedance [1+ &;, (M)]/[1- &, (A)]
to extract m cascaded lumped lossless UE’s, corresponding
to the term (1— A%2)"/2 in (15b), and then extracting a ladder
network of series or shunt lossless inductors or capacitors in
the A domain. Afterwards, the topology of the lossy commen-
surate line network can be easily obtained by substituting
distributed lossy UE’s and short- and open-circuited stubs
for the corresponding lumped lossiess UE’s, inductors, and
capacitors, respectively. For this example, the assumed
lumped lossiess networks for input and output matches are
computed as

5 —0.66431 —0.5439A7 +0.6076A°
ea(A) = 1765698 + 2.30913% + 0.60761°

2.4012A +1.7597A% +2.3021A%
)= 1+3.7704) +3.2250A2 +2.3021A°

€112(A
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Z4,15(3) Zoud(s) . FET Zy,15(s) Zy,5(s)

Zo,opsD(8)

Fig. 2. Amplifier circuit for the 7-14 GHz range.

T dB
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5'; __________________ \“*1:
6 - — — — . Tm7 _525+/-0.185dB
Lossless case
4 A
T=6.895+/-0.135dB
2+ Lossy case with
G1=80 and Qc=120
0 7 8 9 i0 11 {2 {3 44

Frequency GHz

Fig. 3. Frequency response of the amplifier in Example 1.

TABLE 1
AwmpLIFIER PARAMETERS IN FiG. 2
Parameter Impedance Length
Zy, 41.628 Q 2.597 mm
Zo op2 39741 Q 2.597 mm
Zo.13 58.001 Q 2.597 mm
oca 218549 O 3.037 mm
0,005 85.469 Q) 3.037 mm
Zy 16 90.030 © 3.037 mm

and their topologies can be synthesized as shown in Fig. 2.
Line impedances and lengths are presented in Table I.

Step 5: Check whether the synthesized topologies are
practical or not. If not, Kuroda’s identities can be applied to
shift those stubs so that each pair of stubs is spatially
separated by a length of commensurate line. As for an ideal
transformer, which may be encountered in the band-pass
case for transforming the impedance level, the Norton trans-
formation or partial stub extraction [14] (i.e., high-pass
Kuroda identities) can be employed. In this example, the
topologies of the input and output matching networks shown
in Fig. 2 are directly achieved by alternately removing a
cascaded line, followed by a shunt open-circuited stub, then
a cascaded line.

Example 2

According to steps similar to those mentioned above,
another one-stage broad-band FET amplifier for MMIC’s is
designed in which FET’s S-parameter data are taken from
[3]. The necessary inputs for the design are given as follows:

* Source impedance: Z, =50 (1;

* Load impedance: Z; =50 {}; ‘

¢ Quality factor of the conductor: Q; = 100;

* Quuality factor of the dielectric: Q. = 150;

* Frequency at which the above quality factors are mea-
sured: - f,, = 8 GHz;
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Z,0526(s) !

Zo,155(s)
L S
Z, | L':

Fig. 4. Amplifier circuit for the 4-8 GHz range.

Zo,10(s) '

TABLE 11
AMPLIFIER PARAMETERS IN FIG. 4
Parameter Impedance Length
Zy.n 49,118 © 6.186 mm
Zo0p2 58.061 Q) 6.186 mm
Zy.s 41,915 Q 2.190 mm
T dB
10
e e w T=7.44+/-0.33dB
8 + Lossless case
6 +
e ——— ——— e
/// T=6,96+/-0.37d8
1+ LOoSsy case with
@1=4100 and Qc=150
2 1 —ew—-. Initial response
in [3]
0

4 45 5 55 6 6.5 7 75 8
Frequency GHzZ

Fig. 5. Frequency response of the amplifier in Example 2.

¢ Passband: 4 GHz < f < 8 GHz;

* Maximum complexity of the matching networks:
input matching network: n=2, k=0, m=1;
output matching network: n=2, k=0, m=1;

* Flat gain level to be approached: T (w) =7 dB.

After optimization, it is found that the low-pass stub in the
output matching network can be omitted. Thus, the final S
parameters of the assumed lumped lossless input and output
matching networks are as follows:

) —0.4484) +0.42312
211N =TT 23080 04302
) ~0.1773A

en.2(A) = o156 -

The topology of the amplifier is shown in Fig. 4, and its
parameters are given in Table II. The gain responses of the
amplifier in lossy and lossless cases are shown in Fig. 5.

IV. CoNcLUSIONS

The method described in this paper extends the real
frequency techniques [6], [7] to the distributed lossy case and
is straightforward in comparison with the techniques pre-
sented in [2] and [3). It can handie lossy UE’s and stubs
with arbitrary frequency-dependent propagation constants
and characteristic impedances and has all of the advantages
of the real frequency techniques. Moreover, from the gain
performances shown in Fig. 3 and Fig. 5, it can be seen that

the optimized lossy gains are on the average about 0.63 dB
and 0.18 dB lower than the gains calculated by taking the
lossy elements out or, equivalently, by letting O, and Q_ be
infinite. In practice, the lossy parameters, O, and Q., may
vary over a wide range, so that it is worthwhile to take the
losses of the lines into consideration in the synthesis of a
lossy commensurate line network. It has also been shown
that the ripples of the lossless gains are much less than those
of the initial gain responses presented in [2] and [3].

APPENDIX
Proor oF THE THEOREM

Assume that there are two impedances, given below, which
satisfy the condition of the theorem:

2,=2,f(Z,/Z;) (Ala)
2,=2,f,(Z,/Z,). (Alb)
Then, it is easy to verify that the parallel and series
impedances between (Ala) and (Alb),
Z212y

2y, = =7 Z,/Z
2wt 2, 2f3,,(Z1/2Z3)

(A2a)

and
z3s=21t2,=2,f3 (Z,/Z,) (A2b)

have expressions similar to those of (A1), where f; , and f; |
are still rational functions of Z, /Z, as f; and f,.

Suppose that at any port the input impedance of an n-port
network built by the elements which satisfy the condition of
the theorem has an expression similar to (Al),

Zt=Zth(Zl/Z2) (A3)
where i (i=1,2,---,n) stands for the ith port. It can be
clearly seen by calculations similar to (A2) that regardless of
whether z; is in parallel to or in series with z; in (Ala), the
resulting impedance will have the form given in the theorem,
ie.,

Zi,p=szi,p(Zl/Zz) (Ada)
or
Z, =251, (Z,/Z;). (Ad4b)

Thus, it can be concluded that if each element of an n-port
network satisfies the condition of the theorem, any open-cir-
cuit impedance z,; between port i and j (i,j=1,2,"+-,n)
will meet the condition too. Therefore, in terms of the
transformation of the theorem in [1], an expanded form of
the transformation between the impedances of a lossy com-
mensurate line network and a lumped lossless network is
obtained. So are their impedance matrices written as (7) by
means of the corollary in [1]. This completes the proof.
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