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Computer-Aided Synthesis of a Lossy

Commensurate Line Network and
Its Application in MMIC’S

Lizhong Zhu, Member, IEEE

Abstract —In this paper, a useful theorem which extends a previously

introduced 10SSYtransformation technique [1] to more general applica-

tions is proposed for transformation between distributed Iossy and
lumped Iossless networks, and a corollary is given for extension of the

well-knowm Kuroda identities to the general 10SSY case. A new
computer-aided approach is developed for the synthesis of 10SSY com-
mensurate line networks with all lines having arbitrav frequency-
dependent losses. As an application, two broad-band amplifiers are
designed for monolithic microwave integrated circuits (MMIC’S) and
their performances are compared with the examples in [2] and [3].

I. INTRODUCTION

I T is well known that MMIC’S have found a variety of
applications in radar, spaceflight, satellites, and military

communications. Matching networks are the most important
parts of MMIC’S and are usually constructed from lumped
and distributed elements. These matching elements, which
are fabricated on semi-insulating GaAs substrates, have losses
much greater than those of matching elements developed for
conventional hybrid integrated circuits. Thus, existing tech-
niques that are considered efficient [2]–[10] for synthesizing
lumped and distributed lossless matching networks are not
suitable for 10SSYmatching networks. To solve this problem,
a theorem has been introduced [11for transformation be-
tween lumped 10SSYand lossless networks, and a new com-
puter-aided 10SSYtransformation technique has been devel-
oped for treating the synthesis of lumped matching networks
with arbitrary nonuniform losses. However, it is clear that
only a small part of the problem has been solved. As fre-
quency increases to the millimeter-wave region, the dis-
tributed network is superior to the lumped one in many
aspects. For example, transmission lines have lower parasitic
reactance and their characteristic impedances can be real-
ized easily and exactly.

The modern design of microwave TEM distributed net-
works is based upon a complex plane transformation intro-
duced by Richards in 1948 [11]. Later, other authors were
stimulated by his article and significant achievements were
made. The well-known Kuroda identities were among these
contributions, making it possible to realize synthesized com-
mensurate line networks. As for the synthesis of distributed
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10SSYnetwork, to our knowledge, few published papers have
dealt with it.

In order to consider the losses of transmission lines in the
synthesis of a distributed network, a new and useful theorem
is introduced which extends the 10SSYtransformation tech-
nique described in [1] to wider applications and makes it
possible to obtain the parameters of a corresponding 10SSY
commensurate line network from those of a lumped lossless
network. The well-known Kuroda identities are extended by
a corollaw to the general 10SSYcommensurate line network,
It will be seen by comparison with the results shown in [2]
and [3] that the new method is practically applicable and
considerably simplified, and is able to yield any complex
models of the commensurate lines with arbitrary frequency-
dependent losses. Furthermore, a computer-aided procedure
is presented to show the detailed synthesis steps of two
broad-band monolithic microwave integrated FET amplifiers
with 10SSYcommensurate line networks as matching net-
works.

11. TRANSFORMATION AND KURODA’S IDENTITIES OF

THE LossY COMMENSURATE LINE NETWORK

Richards, in his famous paper [11], first used the following
transformation:

A = tanh[y(s)l] (1)

to synthesize a lossless commensurate line network,l where
-y(s) is the propagation constant; s = jw, the complex angular
frequency; and 1 is the length of all the transmission line
elements. By this relation, a complex angular frequency in
the s plane will be mapped into the A plane, and many
theorems for lumped Iossless networks can be “translated”
into theorems on the Iossless commensurate line network.
Thereafter, the Richards transformation became the theoret-
ical basis for almost all the published papers on distributed
network synthesis, and the relevant theorems were used to
treat the lossless commensurate line network. However, a
general method had not been found for the synthesis of a
lossy commensurate line network with all lines having arbi-
trary frequency-dependent losses.

In general, the propagation constant and characteristic
impedance of a 10SSYtransmission line are frequency-depen-

1small losses were considered under the assumption that all lines ‘n

the circuit are distortiordess. But the change of frequency variable must
be made in the true frequency plane, as was done by Darlington [12].
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dent functions and can be written as

y(s) =j(sL+l?)(sC+G) =~OyO(s) (2a)

2.(s) =~(sL+R)/(sC+G) =2.,,6(s) (2b)

in which

Po = ~ln /c”p (3a)

YO(S) = j(h +1/Q~)(h. + l/Q.) (3b)

zo,t=~ (3C)

8(s) =~(j~n+l/Ql)/(jon +l\QC) (3d)

where R, L, G, and C are the series resistance, series
inductance, shunt conductance, and shunt capacitance, all
per unit length, for a given line. QI = w~L /R and QC =
ti~C/ G are the quality factors of the conductor and dielec-
tric of the line, respectively, at measured angular frequency

Wm. CUP= I/@ is the velocity of propagation on the line,
and on = OJ/ Om is the normalized angular frequency. From
(2b), (3c), and (3d), it can be found that the characteristic
impedance, Zo(s), may be divided into two parts, one being
the frequeney-dependent function 8(s), and the other the
real positive multiplicative constant, Zo,t. If the lossy trans-
mission line reduces to a corresponding lossless one, 8(s)
will be equal to 1 and 2.(s) to 2., ~, which is usually called
the static characteristic impedance of the lossless transmis-
sion line.

Now, assume that all elements constructed by the 10SSY
transmission lines have the same y(s) and 8(s). Then the
impedances of short- and open-circuited stubs will have the
following expressions:

ZJS) = Zo,,h6(s) tanh[y(s)l] (4a)

Zop(s) = zo,op8(s)/tanh [~($)Z] (4b)

where zq~h and Zo,op are similar to Zo, t, and 20 ,~t3(s) and
Zo,OP?i(s) are frequency-dependent characteristic impedances
of the short- and open-circuited stubs.

If a lossy commensurate line network contains only the
short- and open-circuited stubs, then by substituting

ZI = ~(s)tanh[y(s)l] (5a)

Z,=d(s)/tanh[y( s)l] (5b)

in (4), we have

‘sh(s) = ‘(),shzl (6a)

‘%( ~) = -z(l,opzz . (6b)

Thus, in terms of the transformation introduced in [1], the
lossy commensurate line network can be transformed to a
corresponding lumped lossless network or the Richards
transformation can be used to transform the short- and
open-circuited stubs to lossless inductors and capacitors,
respectively, if the stubs are lossless.

But a 10SSYcommensurate line network without a finite
lossy transmission line, which is usually incorporated as a
distributed 10SSYunit element (UE), will be practically use-
less. However, unlike a finite Iossless transmission line, the
distributed lossy UE cannot be transformed directly by the
Richards correspondence. Furthermore, it is uncertain
whether or not the distributed 10SSYUE can be transformed
as the short- and open-circuited stubs. In order to solve this
problem, the transformation in [1] is revised and a new

t-’--l

--+-=

ZO,lMS) *Y(S) =

~—j.. ~

Fig. 1. Equivalent circuit of a distributed lossyunit element.

theorem, given below, is proposed which can be employed to
transform the distributed lossy UE to a corresponding
“lumped lossless UE.”

Theorem: If each element of a basic unit or of its equiva-
lent circuit produces an individual impedance equal to the
product of Z2 and a rational function of ZI /22, except for
a possible branch point at ZI /Z2 = 1, where ZI and 22 are
any physically realizable impedances, then the impedance
matrix of any 10SSYor lossless network N constructed by
these basic units, if it exists, can be- transformed to the
impedance matrix of a corresponding lossless network M.
That is,

Z(A) = Z\m=F(A2)\A

z(s) =.2= =z2F(z1/z2)

(7a)

(7b)

where F(x) is a matrix with its elements being the rational
functions of x. 2(A) and Z(s) are impedance matrices of M
and N, respectively, with A and s being their complex
angular frequencies, which are related by

A=~~. (8)

(See the proof in the Appendix.)

It can be easily verified that (8) maps both right halves of
the s and A planes to each other. This mapping is certainly
not one-to-one, but the multiple-valued state of the inverse
corresponds merely to the periodicity of Z(s) given by (7b).

It should be emphasized that although this theorem is
based upon the theorem in [1] and has a form of transforma-
tion similar to [1, corollary 1] the conditions between them
are different. The former extends the original condition of
the latter to ‘a more general case. That is, all that is required
is that each element in the impedance matrix or in the
equivalent circuit of a basic unit have the form Z2~(Z1 /22).
Of course, this form can reduce to 21 or 22. Therefore, this
theorem is especially suitable for those elements which can-
not simply be represented by the impedance which is propor-
tional to 21 or 22, The advantage of the theorem can be
seen clearly by the following example.

A distributed Iossy LJE with line length 1 (shown in Fig. 1)
can be considered as a basic unit and is generally expressed
by its transfer matrix

[

cosh[y(s)l] ZtJ,,8(s) sinh[y(s)l]

‘= sinh[y(.Y)~]/ [,Z(j,(6(s)] 1cosh[y(s)l] “

(9)

Then it can be found by substituting (5) in the elements, ZI
tind Zz, of its equivalent circuit that the condition of the
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theorem is satisfied, i.e.,

z~ = Z0,,Z2[1 – J-] (lOa)

z~ = zo, tz2@ zl/z2 . (lOb)

Here, ZO,t, 8(s), ~nd -y(s) are given by (2) and (3). Thus, with
the help of (7), Z, the impedance matrix of a corresponding
“lumped lossless UE,” can be obtained from Z, the

impedance matrix of the distributed 10SSYUE:

z

[

z~ + 22 22

“m=& Z2
z~ + 221

-[

z, 1 &F——Y J= ~ 1

(11)

where A = ~~ = tanh [y(s) l].

Since a 10SSYcommensurate line network is usually con-
structed by the distributed 10SSYUE’S and by short- and
open-circuited 10SSYstubs, an important conclusion can be
drawn. This is that if all the elements of the 10SSYcommensu-
rate line network have a common propagation constant, -y(s),
and their characteristic impedances are all proportional to
8(s), where in addition to the expressions given in (2) and

(3), y(s) and 8(s) may be any other frequency-dependent
functions, there will be a one-to-one transformation between
the 10SSYcommensurate line network and its corresponding
lumped lossless network with distributed 10SSYUE’S, short-
circuited 10SSYstubs, and open-circuited 10SSYstubs corre-
sponding to “lumped lossless UE’S,” lossless inductors, and
capacitors, respectively.

Therefore, by means of the following transformation [1]:

~(A) =

s(s) =

[(l+s) -=(1-s))

((l+S)+=(l-S)]-l (12a)

[m(z+~) -(z-i)}

{m(I+~)+(l-~)}-l (12b)

where S(s) and ~(A) are the unit normalized scattering
matrices of any 10SSYor lossless network N and its corre-
sponding lossless network M, respectively, I is the identity
matrix, and ZI and 22 are as defined in (5), the unknown
unit normalized scattering parameters of the 10SSYcommen-
surate line network can be obtained from those of a previ-
ously assumed lumped Iossless network. A detailed descrip-
tion will be given in Section III.

It should be noted that although the A in (11) has the
same expression as that employed by Richards, the transfor-
mation given in (12) cannot be achieved by directly using his
correspondence. In reverse, it can be seen by carefully con-
sidering the transformation (12) that the Richards trans-
formation may be considered as a special case of our
transformation. For example, if all of the lossy lines in a
commensurate line network reduce to their corresponding
lossless ones, 8(s) will be equal to 1 and -y(s) to ST, where

T = 1/ CUP. These will result in ~Z1Z2 = 1 and A

=~~= tanh(s~). In this case, (12) will become the
well-known Richards correspondence, i.e.,

S(s) = Lf(A)l A=tanh(.f~) (13)

where s = jw.

Even though the 10SSYcommensurate line network maybe
synthesized by means of the transformation mentioned above,
without the corresponding Kuroda identities, the synthesized
network may sometimes be impracticable.2 Are the Kuroda
identities still valuable in this 10SSYcase? The answer is yes!

Corollary: The Kuroda identities, which are suitable for
the lossless commensurate line network, will still hold for the
corresponding 10SSYcommensurate line network.

In applying the corollary, one point to which attention
should be paid, is that because of the 10SSYproperty of the
distributed 10SSYUE, a new distributed 10SSYUE introduced
in front of the 1 C! source or load resistor and shifted into
place using Kuroda’s identities for making the synthesized
network practically realizable, as is usually done for lossless
transmission lines [9], will cause the characteristics of the
final network to deviate from those of the originally synthe-
sized one. Certainly, the larger the number of distributed
10SSYUE’S introduced, the larger the resulting deviation. To
solve this problem, two methods may be employed. In the
first, a proper ratio between the number of distributed lossy

~S Wld iOSSY StUbS iS Ch06C11.~US, ti tit% d short-
CilVldtt%i stubs, Which are diffhdt to ldii in ptXtim, _
be transformed by ShiRing the relevant distributed bssy ~S
eomaimd inthenetwork. In the second meti@thedcviaticm
resulting fkorn the introduced distributed lossy LIE’s is adjusted
by optimizing the final network.

III. APPLICATION OF THE DISTRIBUTED LossY

TRANSFORMATION TECHNIQUE

In order to clearly demonstrate the synthesis procedure of
the 10SSYcommensurate line network and its application in
MMIC’S, the detailed synthesis steps for two broad-band
monolithic microwave integrated FET amplifiers are illus-
trated.

Example 1

Step 1: The lumped lossless networks, which can be real-
ized by ideal transformers, “lumped lossless UE’S,” and
lossless inductors and capacitors, are assumed to correspond
to 10SSYcommensurate line matching networks and to have
the following forms of unit normalized scattering parame-
ters:

h(A) h1+h2A+h3A2+ .. +hn+lAn
Z,,,{,(A)=—= (15a)

g(A) g1+g2A+g3A2+ .,. +gn+lA”

Z,2,,,(A) =Z2,,,(A) =f(A)/g(A)

=(+/ -) Ak(l-A2)~’2/’g(A) (15b)

222,,,(A)=( -1) ~+ih(– A)/g(A) (V G 1,2,..., ArjW).

(15C)

Here NM is the number of network, h(A) and g(A) are the

numerator and denominator polynomials of ;l, ,,(A) and
have the same degree n. The numerator polynomial ~(A) of

2Even if the low-pass Kurocia identities are the same as the Richards
technique by alternately removing a shunt open-circuited stub followed
by u cuscaded line, and high-pass Kumda identities are equivalent to the
partial stub extraction [14], the Kuroda identities are somewhat more
convenient for practical applictitiorrs.
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212,.(A) has degree m + k < n, where m and k represent the
number of lumped lossless UE’S and high-pass elements,

respectively. Thus, the number of low-pass elements is deter-
mined by n –(m + k).

It should be pointed out that even though the number of
total matching elements is specified by n, the optimal num-
ber of elements will be determined by adjusting the coeffi-
cient hi(i=l,2,. ””, n +1) of h(s) in an optimization proce-

dure, and the coefficient gi of g(s) will be correspondingly
specified in accordance with the unitary property of a loss-
Iess network [7], [13]. Also, since the line length 1,, (u=
1,%- NM) in our tee$nique is used as a variable for obtain-
ing even better performance, its value, which is chosen as a
quarter wavelength at 1.5 times the high-frequency limit of
the passband, will become an initial value in the optimiza-
tion. Thus, the final line lengths of the matching elements in
a matching network may differ from those in another match-
ing network.

~ 2: Q, ad Q= of the distributed hay ~’S and 10SSY
stubs areaasumed to be80snd 120 at~-=14GHs and

c = 3 x 10’1 mm/s, and /?., 7(s), and 6(s) are then computed.
B~aubsdtuting (3a) and (3b) into (2a), and (2a) and (3d) into
(5), respectively, 21 and Z in (12) can be calculated. ‘llms, the
Unit normalized SMthXiIlg parsrneters, e;j,v (S) (i, j c 1, 2), of
the lossy commensurate lime matching networks can be obtained
from (15) via (12).

Step 3: The numerically specified scattering parameters of
a HP 1 ~m MESFET are used [2] across the octave band of
7-14 GHz. The source and load impedances of the amplifier,

Zg and Zl, are specified to be 50 Q. The expression for the
transducer power gain (TPG) of a 10SSYmatched amplifier [1]
is employed in the optimization. It can be found by analyzing
the FET’s scattering parameters that the device is absolutely
stable with the calculated maximum available gain from
14.73 dB at 7 GHz to 7.98. dB at 14 GHz, Thus, from the
maximum gain–bandwidth point of view, the goal of a flat

gain level, TO(0), to be approached by the TPG should not
exceed 7.98 dB. Therefore, considering the losses in the 10SSY
matching elements and the calculated maximum available
gain at 14 GHz, TO(0) is specified to be 7.0 dB over the
octave band.

Step 4: With h, being unknown variables, a better TPG
will be achieved by an optimization routine, and .21,,,,(A) in

(15a) can then be determined. Thus, the lumped lossless
network can be realized by first applying Richards’ theorem
m times to the input impedance [1+ El I,[,(A)]/[l – ZI I,{,(A))]
to extract m cascaded lumped lossless UE’S, corresponding
to the term (1 – A2)rn/2 in (15 b), and then extracting a ladder
network of series or shunt lossless inductors or capacitors in
the A domain. Afterwards, the topology of the 10SSYcommen-
surate line network can be easily obtained by substituting
distributed 10SSYUE’S and short- and open-circuited stubs
for the corresponding lumped lossless UE’S, inductors, and
capacitors, respectively. For this example, the assumed
lumped lossless networks for input and output matches are
computed as

– 0.6643A – 0.5439A2 + 0.6076A3
:II,I(A) =

1+ 2.6569A+ 2.3091 A2 +0.6076A~

2.4012A + 1.7597A2 +2.302111
:11,2(A) = 1 + 3.7704A + 3.2250A2 + 2.3021 kz

Z,,,’b(s) Z!),,86(S) m Z0,,,5(S) Z0,*6(S)

Fig, 2. Amplifier circuit for the 7-14 GHz range.

T dB
12-

-——. Initial response

10-~--’~. in [21
~+.

8- .
-——- ———— __=

----- ----- ----- -- - -%-

6- - ---- T-7 . 52.5+/-0. i85dB

Lossless csse

4- .
-T-6 . 095+/-0. f35m

2. . Lossy cese with
01=00 end Qc-i20

J
‘7

J
8 9 10 M i2 H u

Frequency Gl+z

Fig. 3. Frequency responseof the amplifier in Example 1.

TABLE I
AMPLIFIER PARAMETERS IN FIG. 2

Parameter Impedance Length

z 0,11 41.628Q 2.597mm
z o,0p2 39.741 f) 2.597 mm
Z(),13 58.001 (2 2.597 mm
z 0,14 218.549 Q 3.037 mm
z“, ~p~ 85.469Q 3.037mm
z 0,16 90.0300 3.037mm

and their topologies can be synthesized as shown in Fig. 2.
Line impedances and lengths are presented in Table I.

Step 5.’ Check whether the synthesized topologies are
practical or not, If not, Kuroda’s identities can be applied to
shift those stubs so that each pair of stubs is spatially
separated by a length of commensurate line. As for an ideal
transformer, which may be encountered in the band-pass
case for transforming the impedance level, the Norton trans-
formation or partial stub extraction [14] (i.q., high-pass
Kuroda identities) can be employed. In this example, the
topologies of the input and output matching networks shown
in Fig. 2 are directly achieved by alternately removing a
cascaded line, followed by a shunt open-circuited stub, then
a cascaded line.

Example 2

According to steps similar to those mentioned above,
another one-stage broad-bimd FET amplifier for MMIC’S is
designed in which FET’s S-Darameter data are taken from
[3]. The necessary inputs for-the design are given as follows:

●

●

●

●

●

Source impedance: Zg =50 Q;
Load impedanc~: Z,= 50 (1; ‘
Quality factor of the conductor: Q,= 100;
Quality factor of the dielectric: Q,. = 150;
Frequency at which the above quality factors are mea-
sured: ~,,, = 8 GHz;
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Zo,t,a(s) ‘ Z(,,,JXS) 1 FE’r

z,
%’

Fig. 4. Amplifier circuit for the 4–8 GHz range.

TABLE II
AMPLIFIERPARAMETERSIN FIG. 4

●

●

●

Parameter Impedance Length

.zO, fl 49.118 Q 6.186 mm

Z0,0P2 58.061 (2 6.186 mm

-Zo. t3 41.9150 2.190 mm

6

t
~——— —— -- ---- ---- -

,/-- T=96 . 96+/-0. 37dB

I
4 ~- LOSSY case with .

Q1-100 tmd 0c=150
i? ———. Initial response

Frequency GHz

Fig. 5. Frequency response of theamplifier in Example2.

Passband: 4 GHz < ~ <8 GHz;
Maximum complexity of the matching networks:

input matching network: n=2, k=O, rn=l;
output matching network: n=2, k=O, m=l;

Flat gain level to be approached: TO(o) =7dB.

After optimization, it is found that the low-pass stub in the
output matching network can be omitted. Thus, the final S
parameters of the assumed lumped lossless input and output
matching networks are as follows:

– 0.4484A+ 0,423A2
:ll,l(A) =

1 + 1,4308A+ 0,423A2

–0.1773A
~ll,2(A) = 1+1.0156A “

The topology of the amplifier is shown in Fig. 4, and its
parameters are given in Table II. The gain responses of the
amplifier in, 10SSYand lossless cases are shown in Fig. 5.

IV. CONCLUSIONS

The method described in this paper extends the real
frequency techniques [6], [7] to the distributed 10SSYcase and
is straightforward in comparison with the techniques pre-
sented in [2] and [3]. It can handle 10SSYUE’S and stubs
with arbitrary frequency-dependent propagation constants
and characteristic impedances and has all of the advantages
of the real frequency techniques. Moreover, from the gain
performances shown in Fig. 3 and Fig. 5, it can be seen that

the optimized 10SSYgains are on the average about 0.63 dB
and 0.18 dB lower than the gains calculated by taking the
10SSYelements out or, equivalently, by letting Ql and Q= be
infinite. In practice, the 10SSYparameters, Q1 and Q=, may
vary over a wide range, so that it is worthwhile to take the
losses of the lines into consideration in the synthesis of a
10SSYcommensurate line network. It has also been shown
that the ripples of the lossless gains are much less than those
of the initial gain responses presented in [2] and [3].

APPENDIX

PROOF OF THE THEOREM

Assume that there are two impedances, given below, which
satisfy the condition of the theorem:

Z*= z2f1(z1/z2) (Ala)

z~ = ZJ2(Z1 /zz). (Alb)

Then, it is easy to verify that the parallel and series
impedances between (Ala) and (Alb),

ZIZ.2
z~,p = — ‘ ZJ3,P(zl /z2)

21 + 22

and

Z3,. = 21 + 22 = ‘2 f3, s(zl /z2)

have expressions similar to those of (.41), where
are still rational functions of ZI / Z2 as ~1 and

(A2a)

(A2b)

fj,~ and fs,,

f2.

Suppose that at any port the input impedance of an n-port
netwo~k built by the elements which satisfy the condition of
the theorem has an expression similar to (Al),

z, = -Z2.fl(zl/z2) (A3)

where i (i=l,2,. .” , n) stands for the ith port. It can be
clearly seen by calculations similar to (A2) that regardless of
whether Zi is in parallel to or in series with z, in (Ala), the
resulting impedance will have the form given in the theorem,
i.e.,

‘i,p = ‘2 fi,p(zl /’z2) (A4a)

or

-z,s=z2fi,s(zl /-z2). (A4b)

Thus, it can be concluded that if each element of an n-port
network satisfies the condition of the theorem, any open-cir-
cuit impedance Z,j between port i and j (i, j = 1,2,”. “, n)
will meet the condition too. Therefore, in terms of the
transformation of the theorem in [1], an expanded form of
the transformation between the impedances of a lossy com-
mensurate line network and a lumped lossless network is
obtained. So are their impedance matrices written as (7) by
means of the corollary in [1]. This completes the proof.
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